大容量光催化反應儀CY-GHX-BC特點說明的詳細資料:
大容量光催化反應儀CY-GHX-BC特點說明
技術參數:
型號:CY-GHX-BC大容量控溫光化學反應儀
(一)主體部分
1.光源功率可連續調節大小。
2.集成式光源控制器,可供汞燈、氙燈、金鹵燈等多種光源使用。
3.汞燈功率調節范圍:0~1000W可連續調節。
4.氙燈功率調節范圍:0~1000W可連續調節。
5.金鹵燈功率調節范圍:0~500W可連續調節。
(二)d容量反應部分
1.玻璃反應器皿可以分別選用250ml、500ml、1000ml等(或定做)。
2.大功率強力磁力攪拌器使樣品充分混勻受光。
(三)控溫裝置
1.冷卻水循環裝置制冷量:>1000W
2.控溫范圍:-5°C到100°C
3.冷卻水循環裝置設有腳輪和底部排液閥。
光化學反應與一般熱化學反應相比有許多不同之處,主要表現在:加熱使分子活化時,體系中分子能量的分布服從玻耳茲曼分布;而分子受到光激活時,原則上可以做到選擇性激發,體系中分子能量的分布屬于非平衡分布。所以光化學反應的途徑與產物往往和基態熱化學反應不同,只要光的波長適當,能為物質所吸收,即使在很低的溫度下,光化學反應仍然可以進行。
光化學的初級過程是分子吸收光子使電子激發,分子由基態提升到激發態。分子中的電子狀態、振動與轉動狀態都是量子化的,即相鄰狀態間的能量變化是不連續的。因此分子激發時的初始狀態與終止狀態不同時,所要求的光子能量也是不同的,而且要求二者的能量值盡可能匹配。
由于分子在一般條件下處于能量較低的穩定狀態,稱作基態。受到光照射后,如果分子能夠吸收電磁輻射,就可以提升到能量較高的狀態,稱作激發態。如果分子可以吸收不同波長的電磁輻射,就可以達到不同的激發態。按其能量的高低,從基態往上依次稱做D一激發態、第二激發態等等;而把高于D一激發態的所有激發態統稱為高激發態。
激發態分子的壽命一般較短,而且激發態越高,其壽命越短,以致于來不及發生化學反應,所以光化學主要與低激發態有關。激發時分子所吸收的電磁輻射能有兩條主要的耗散途徑:一是和光化學反應的熱效應合并;二是通過光物理過程轉變成其他形式的能量。
光物理過程可分為輻射弛豫過程和非輻射弛豫過程。輻射弛豫過程是指將全部或部分多余的能量以輻射能的形式耗散掉,分子回到基態的過程,如發射熒光或磷光;非輻射弛豫過程是指多余的能量全部以熱的形式耗散掉,分子回到基態的過程。
決定一個光化學反應的真正途徑往往需要建立若干個對應于不同機理的假想模型,找出各模型體系與濃度、光強及其他有關參量間的動力學方程,然后考察何者與實驗結果的相符合程度*高,以決定哪一個是*可能的反應途徑。
大容量光催化反應儀CY-GHX-BC特點說明
光催化凈化技術主要是利用光催化劑二氧化欽(T'02)吸收外界輻射的光能,使其直接轉變為化學能。當能量大于Ti02禁帶寬度的光照射半導體時,光激發電子躍遷到導帶,形成導帶電子(e-),同時在價帶留下空穴階(h+)。由于半導體能帶的不連續性,電子和空穴的壽命較長,它們能夠在電場作用下或通過擴散的方式運動,與吸附在半導體催化劑粒子表面上的物質發生氧化還原反應,或者被表面晶格缺陷俘獲。空穴和電子在催化劑粒子內部或表面也能直接復合,空穴能夠同吸附在催化劑粒子表面的月口一或HZO發生作用生成經基自由基HO " , HO.是一種活性很高的粒子,能夠無選擇的氧化多種有機物并使之礦化。
由于光催化還屬于一種新興的技術,有很多因素還需要額外考慮,諸如納米光催化劑的制備技術、納米光催化劑的高活性和高壽命技術、納米光催化劑的固載化技術和納米光催化劑反應的設計技術,這些因素的實現勢必會使得凈化器價格攀升,從而影響推廣。然而該技術*大的不足在于,從利用太陽光效率的角度看,半導體的光吸收波長范圍狹窄,主要在紫外區,利用太陽光的比例低;光生載流子的復合率很高,導致量子效率較低。